
THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics

MATH4240 Stochastic Processes, 2020-21 Term 2

Take-home Midterm Test

Time and Date: 10:00am March 19 to 10:00am March 20

Answer all questions in both Part I and Part II (Total points: 120). Give adequate expla-
nation and justification for all your computations and observations, and write your proofs in a
clear and rigorous way.

Part I (100 points). Computations.

1. (15 points) Let {Xn}n≥0 be a Markov chain with state space S = {a, b, c}, transition
matrix

P =

a b c
0 1

3
2
3

1
4

3
4 0

2
5 0 3

5

,

and the initial distribution π = (25 ,
1
5 ,

2
5). Compute the following

(a) Pa(X1 = b,X2 = b,X3 = b,X4 = a,X5 = c),

(b) Pc(X1 = a,X2 = c,X3 = c,X4 = a,X5 = b),

(c) Pa(X1 = b,X3 = a,X4 = c,X6 = b),

(d) P (X1 = b,X2 = b,X3 = a),

(e) P (X2 = b,X5 = b,X6 = b).

2. (15 points) Let {Xn}n≥0 be a Markov chain with state space S = {x, y, z, w} and transition
matrix

P =

x y z w


0 0 1 0

0 0.4 0.6 0

0.8 0 0.2 0

0.2 0.3 0 0.5

.

(a) Compute P (X5 = z,X6 = x,X7 = z,X8 = z|X4 = y).

(b) Compute E(f(X5)f(X6)|X4 = w) for the function f with values 2, 3, 7 and 3 at x, y, z
and w respectively.

(c) For each i, j ∈ S, find ρij , the probability that starting at i the chain ever visits j in
finite time.
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3. (10 points) Consider a Markov chain with state space S = {1, 2, 3} and the transition
matrix

P =

1 2 3
1 0 0

1
2

1
6

1
3

1
3

3
5

1
15

.

(a) For each i = 1, 2, 3 and all k = 1, 2, · · · , compute the probabilities that starting at i,
the first visit to 3 occurs at time k.

(b) For each i = 1, 2, 3, find the probability that starting at i, the chain never visits 3 at
any positive time.

4. (10 points) Consider the Markov chain with state space S = {1, 2, · · · , 10} and transition
matrix

P =

1 2 3 4 5 6 7 8 9 10



1
2 0 1

2 0 0 0 0 0 0 0

0 1
3 0 0 0 0 2

3 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1
3

1
3 0 0 0 1

3 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1
4 0 3

4 0

0 0 1
4

1
4 0 0 0 1

4 0 1
4

0 1 0 0 0 0 0 0 0 0

0 1
3 0 0 1

3 0 0 0 0 1
3

.

(a) Draw the transition graph.

(b) State the decomposition of state space by finding all the irreducible closed sets of
recurrent states as well as the set of transient states.

(c) Write down the canonical form of transition matrix by reordering states.

5. (15 points) Given a branching process with the offspring distribution

p0 = 0.5, p1 = 0.1, p3 = 0.4.

(a) Determine the extinction probability ρ.

(b) Let X0 = 1. What is the probability that the population is extinct in the second
generation (X2 = 0), given that it did not die out in the first generation (X1 > 0)?

(c) Still let X0 = 1. What is the probability that the population is extinct in the third
generation, given that it was not extinct in the second generation?
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6. (15 points) Let Xn, n ≥ 0, denote the capital of a gambler at the end of the nth play. His
strategy is as follows. If his capital is 4 dollars or more, then he bets 2 dollars which earn
him 4, 3 or 0 dollars with respective probabilities 0.25, 0.30 and 0.45. If his capital is 1, 2
or 3 dollars, then he plays more conservatively, bets 1 dollar, and this earns him either 2
or 0 dollars with respective probabilities 0.45 and 0.55. When his capital becomes 0, he
stops.

(a) Let Yn+1 be the net earnings at the (n+ 1)th play, that is,

Xn+1 = Xn + Yn+1.

Compute
P (Yn+1 = k|Xn = i), i = 0, 1, · · · ; k = −2,−1, 0, 1, · · · .

(b) Explain that {Xn}n≥0 is a Markov chain.

(c) Compute the transition probabilities for the chain.

(d) Classify the states, either recurrent or transient.

7. (20 points) Let {Xn}n≥0 be a Markov chain over S = {1, 2, · · · , 7} with the following
transition matrix

P =

1 2 3 4 5 6 7



0.7 0 0 0 0.3 0 0
0.1 0.2 0.3 0.4 0 0 0
0 0 0.5 0.3 0.2 0 0
0 0 0 0.5 0 0.5 0

0.6 0 0 0 0.4 0 0
0 0 0 0 0 0.2 0.8
0 0 0 1 0 0 0

.

Determine the limit lim
n→∞

Pn(x, y) for any x, y ∈ S.

Part II (20 points) Theories and Applications.

8. (10 points) Let {Xn}n≥0 be a stochastic process taking values in a countable state space
S. Suppose there exists an integer K ≥ 1 such that

P (Xn = in|X0 = i0, · · · , Xn−1 = in−1) = P (Xn = in|Xn−K = in−K , · · · , Xn−1 = in−1)

for all i` ∈ S with 0 ≤ ` ≤ n and for all n ≥ K. In other words, given all the past, the
future depends only on the last K values. Such a process is called a K-dependent chain.
For K = 1, we have the ordinary Markov chains. Their theory can, however, be reduced
to that of the ordinary Markov chains by the following procedure.

For each n ≥ 0, let
Yn = (Xn, Xn+1, · · · , Xn+K−1).

Then {Yn}n≥0 is a stochastic process taking values in the countable set F = SK = S ×
· · · × S. Explain that {Yn}n≥0 is an ordinary Markov chain.
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9. (10 points) Let {Xn}n≥0 be an irreducible Markov chain on the state space S = {1, · · · , N}.

(a) Show that there exist 0 < C <∞ and 0 < ρ < 1 such that for any states i, j,

P (Xm 6= j,m = 0, · · · , n|X0 = i) ≤ Cρn, ∀n.

(Hint: There exists a δ > 0 such that for all i, the probability of reaching j some
time in the first N steps, starting at i, is greater than δ. Why?)

(b) Show that (a) further implies E(Tj) <∞, where Tj is the hitting time of j.

—THE END—
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Solution.
1 (a).

Pa(X1 = b,X2 = b,X3 = b,X4 = a,X5 = c) = P (a, b)P (b, b)P (b, b)P (b, a)P (a, c)

=
1

3
× 3

4
× 3

4
× 1

4
× 2

3

=
1

32
.

(b).

Pc(X1 = a,X2 = c,X3 = c,X4 = a,X5 = b) = P (c, a)P (a, c)P (c, c)P (c, a)P (a, b)

=
8

375
.

(c). Note that

P 2 =

a b c


7
20

1
4

2
5

3
16

31
48

1
6

6
25

2
15

47
75

.

Pa(X1 = b,X3 = a,X4 = c,X6 = b) = P (a, b)P 2(b, a)P (a, c)P 2(c, b)

=
1

180
.

(d).

P (X1 = b,X2 = b,X3 = a) = (π(a)P (a, b) + π(b)P (b, b) + π(c)P (c, b))P (b, b)P (b, a)

=
17

320
.

(e). Note

P 3 =

a b c


89
400

73
240

71
150

73
320

35
64

9
40

71
250

9
50

67
125

.

P (X2 = b,X5 = b,X6 = b) = (π(a)P 2(a, b) + π(b)P 2(b, b) + π(c)P 2(c, b))P 3(b, b)P (b, b)

=
2373

20480
.
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2 (a).

P (X5 = z,X6 = x,X7 = z,X8 = z|X4 = y) = P (y, z)P (z, x)P (x, z)P (z, z)

=
12

125
= 0.096

(b).

E[f(X5)f(X6)|X4 = w] = P (w, x)P (x, z)f(x)f(z) + P (w, y)P (y, y)f(y)f(y) +

P (w, y)P (y, z)f(y)f(z) + P (w,w)P (w, x)f(w)f(x) +

P (w,w)P (w, y)f(w)f(y) + P (w,w)P (w,w)f(w)f(w)

=
593

50
= 11.86

(c). Note that {x, z} is an irreducible closed set. Thus,

[ρij ] =


1 0 1 0
∗ ∗ ∗ ∗
1 0 1 0
∗ ∗ ∗ ∗

 ,

where ∗’s are yet to be determined. By the one-step formulae,

ρyw = P (y, w) + P (y, x)ρxw + P (y, y)ρyw + P (y, z)ρzw

ρww = P (w,w) + P (w, x)ρxw + P (w, y)ρyw + P (w, z)ρzw.

Solve it, we have ρyw = 0 and thus ρww = P (w,w) = 0.5, i.e.

[ρij ] =


1 0 1 0
∗ ∗ ∗ 0
1 0 1 0
∗ ∗ ∗ 0.5

 .

Similarly, we consider

ρyx = P (y, x) +
∑
s 6=x

P (y, s)ρsx

ρyy = P (y, y) +
∑
s 6=y

P (y, s)ρsy

ρyz = P (y, z) +
∑
s 6=z

P (y, s)ρsz,

and get ρyx = 1, ρyy = 0.4 and ρyz = 1. Finally, by considering similar one-step formulae with
respect to w, we get ρwx = 1, ρwy = 0.6, ρwz = 1 and ρww = 0.5, i.e.

[ρij ] =


1 0 1 0
1 0.4 1 0
1 0 1 0
1 0.6 1 0.5

 .
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3 (a). By direct observation, one know that we can never visit to 3 if we start at state 1.
Hence, P1(T3 = k) = 0 for all k = 1, 2, . . . .

If we start at state 2, to have first visit to 3, we must never visit to state 1 (it is like a black
hole that nothing can escape) and never go to state 3 before time k, i.e. we must stay at state
2 for t = 1, 2, . . . , k − 1.

Hence, P2(T3 = k) = P2(X1 = 2, X2 = 2, . . . , Xk−1 = 2, Xk = 3) =
1

3× 6k−1

If we start at state 3, then P3(T3 = 1) = P (3, 3) =
1

15
. For time t = k > 1, by similar

reasoning as we start at state 2, we must first go to state 2 and then stay at state 2 until time
k. Finally, we visit back to state 3.

Hence, P3(T3 = k) = P3(X1 = 2, X2 = 2, . . . , Xk−1 = 2, Xk = 3) =
3

5
× 1

6k−2
× 1

3
=

1

5× 6k−2
,

for k > 1.

(b). Obviously, P1(T3 =∞) = 1.

P2(T3 =∞) = 1−
∞∑
k=1

P2(T3 = k)

= 1−
∞∑
k=1

1

3× 6k−1

= 1− 1

3
× 1

1− 1
6

=
3

5
.

P3(T3 =∞) = 1−
∞∑
k=1

P3(T3 = k)

= 1− 1

15
−
∞∑
k=2

1

5× 6k−2

= 1− 1

15
− 1

5
× 1

1− 1
6

=
52

75
.
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4 (a).

(b). The irreducible closed sets of recurrent states are C1 = {1, 3}, C2 = {2, 7, 9} and
C3 = {6}. The set of transient state is ST = {4, 5, 8, 10}.

(c).

P̄ =

1 3 2 7 9 6 4 5 8 10



1
2

1
2 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0
0 0 1

3
2
3 0 0 0 0 0 0

0 0 0 1
4

3
4 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 1

3 0 1
3

1
3 0 0

0 1
4 0 0 0 0 1

4 0 1
4

1
4

0 0 1
3 0 0 0 0 1

3 0 1
3

.
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5 (a). The mean µ = 0.1×1+0.4×3 = 1.3 > 1. Hence, the extinction probability ρ ∈ [0, 1).
Now to find ρ, we need to solve Φ(t) =

∑∞
k=0 pkt

k = t, i.e.

t = 0.5 + 0.1t+ 0.4t3

43 − 9t+ 5 = 0

(t− 1)(4t2 + 4t− 5) = 0

Solve it, we have t = 1,
√
6−1
2 or −

√
6−1
2 . Since ρ ∈ [0, 1), we must have ρ =

√
6−1
2 .

(b).

P1(X2 = 0|X1 > 0) =
P1(X2 = 0, X1 > 0)

P1(X1 > 0)

=
P1(X1 = 1, X2 = 0) + P1(X1 = 3, X2 = 0)

1− P1(X1 = 0)

=
0.1× 0.5 + 0.4× 0.53

1− 0.5
= 0.2

(c). Note that P1(X2 = 0) = P1(X1 = 0) + P1(X1 > 0, X2 = 0) = 0.5 + 0.5 × 0.2 = 0.6.
Therefore,

P1(X3 = 0) = P1(X1 = 0) + P1(X1 = 1)P (X3 = 0|X1 = 1) + P1(X1 = 3)P (X3 = 0|X1 = 3)

= 0.5 + 0.1× 0.6 + 0.4× 0.63

= 0.6464

P1(X3 = 0|X2 > 0) =
P1(X3 = 0, X2 > 0)

P1(X2 > 0)

=
P1(X3 = 0)− P (X2 = 0)

1− P1(X2 = 0)

=
0.6464− 0.6

1− 0.6
= 0.116
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6 (a). For i = 0,

P (Yn+1 = k|Xn = 0) =

{
1, if k = 0

0, otherwise

For 1 ≤ i ≤ 3

P (Yn+1 = k|Xn = i) =


0.45 if k = 1

0.55, if k = -1

0, otherwise

For i ≥ 4

P (Yn+1 = k|Xn = i) =


0.25 if k = 2

0.30, if k = 1

0.45, if k = -2

0, otherwise

(b). It is obvious that

P (Xn+1 = xn+1|Xn = xn, . . . , X1 = x1) = P (Yn+1 = xn+1 − xn|Xn = xn, . . . , X1 = x1)

= P (Yn+1 = xn+1 − xn|Xn = xn)

= P (Xn+1 = xn+1|Xn = xn)

is independent of previous states X0, X1, . . . , Xn−1. Hence, {Xn}n≥0 is a Markov chain.

(c).

P =



1 0 0 0 0 0 0 0 0 · · ·
0.55 0 0.45 0 0 0 0 0 0 · · ·

0 0.55 0 0.45 0 0 0 0 0 · · ·
0 0 0.55 0 0.45 0 0 0 0 · · ·
0 0 0.45 0 0 0.3 0.25 0 0 · · ·
0 0 0 0.45 0 0 0.3 0.25 0 · · ·
0 0 0 0 0.45 0 0 0.3 0.25 · · ·
...

...
...

...
...

...
...

...
...

. . .


(d). State 0 is recurrent since ρ00 ≥ P (0, 0) = 1. Other states are transient since for x = 1, 2

or 3, one can go from x → (x − 1) → · · · → 0 with probability > 0, i.e. a positive probability
that goes to the absorbing state 0 without hitting itself. Similarly, for x ≥ 4, there is a path
x→ (x− 2)→ (x− 4)→ · · · → (4 + (x mod 2))→ (2 + (x mod 2))→ (1 + (x mod 2))→ (x
mod 2) · · · → 0 with probability > 0.
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7. First note that C1 = {1, 5} and C2{4, 6, 7} are irreducible closed set and ST = {2, 3} is
the set of transient state. By reordering the index, we have

P̄ =

1 5 4 6 7 2 3



0.7 0.3 0 0 0 0 0
0.6 0.4 0 0 0 0 0
0 0 0.5 0.5 0 0 0
0 0 0 0.2 0.8 0 0
0 0 1 0 0 0 0

0.1 0 0.4 0 0 0.2 0.3
0 0.2 0.3 0 0 0 0.5

.

First, We solve limk→∞ P̄
k. Now, we need to solve π1PC1 = π1 under the condition

∑
x∈C1 π1(x) =

1 and π1(x) ≥ 0 for all x ∈ C1, i.e.
π1(1) = 0.7π1(1) + 0.6π1(5)

π1(5) = 0.3π1(1) + 0.4π1(5)

π1(1) + π1(5) = 1

π1(x) ≥ 0 ∀x ∈ C1,

and get π1 = (2/3, 1/3).
Similarly, we have π2PC2 = π2 under the condition

∑
x∈C2 π2(x) = 2 and π2(x) ≥ 0 for all

x ∈ C2, i.e. 

π2(4) = 0.5π2(4) + π2(7)

π2(6) = 0.5π2(4) + 0.2π2(6)

π2(7) = 0.8π2(6)

π2(4) + π2(6) + π2(7) = 1

π2(x) ≥ 0 ∀x ∈ C2,

and get π2 = (8/17, 5/17, 4/17).
We further solve {

ρC1(2) = 0.1 + 0.2ρC1(2) + 0.3ρC1(3)

ρC1(3) = 0.2 + 0.5ρC1(3)

and {
ρC2(2) = 0.4 + 0.2ρC2(2) + 0.3ρC2(3)

ρC2(3) = 0.3 + 0.5ρC2(3)

and get ρC1(2) = 0.275, ρC1(3) = 0.4, ρC2(2) = 0.725 and ρC2(3) = 0.6.
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By what we have learnt in lecture, we have

lim
n→∞

P̄n =

C1 C2 2 3



π1...
π1

 0 0 0

0

π2...
π2

 0 0

ρC1(2)π1 ρC2(2)π2 0 0
ρC1(3)π1 ρC2(3)π2 0 0

. =

1 5 4 6 7 2 3



2/3 1/3 0 0 0 0 0
2/3 1/3 0 0 0 0 0
0 0 8/17 5/17 4/17 0 0
0 0 8/17 5/17 4/17 0 0
0 0 8/17 5/17 4/17 0 0

11/60 11/120 29/85 29/136 29/170 0 0
4/15 2/15 24/85 3/17 12/85 0 0

.

Hence,

lim
n→∞

Pn =

1 2 3 4 5 6 7



2/3 0 0 0 1/3 0 0
11/60 0 0 29/85 11/120 29/136 29/170
4/15 0 0 24/85 2/15 3/17 12/85

0 0 0 8/17 0 5/17 4/17
2/3 0 0 0 1/3 0 0
0 0 0 8/17 0 5/17 4/17
0 0 0 8/17 0 5/17 4/17

.

8. Let yk = (ikk, ik(k+1), . . . ik(k+K−1)) for all k ≥ 0. To have P (Yn+1 = yn+1|Y0 = y0, Y1 =
y1, . . . Yn = yn) meaningful, we must have ikm = ik′m for all m and k, k′ = 0, 1, . . . , n + K − 1.
We denote that common ikm by im and write yn+1 = (jn+1, jn+2, . . . , jn+K). In our setting, we
have jl = il for l = n+ 1, n+ 2, . . . , (n+K − 1). Thus, we have

P (Yn+1 = yn+1|Y0 = y0, Y1 = y1, . . . , Yn = yn)

= P (Yn+1 = yn+1|X0 = i0, . . . , Xn+K−1 = in+K−1)

= P ((Xn+1, Xn+2, . . . Xn+K) = (jn+1, jn+2, . . . , jn+K)|X0 = i0, . . . , Xn+K−1 = in+K−1)

= P (Xn+K = jn+K |X0 = i0, . . . Xn+K−1 = in+K−1)

= P (Xn+K = jn+K |Xn = in, Xn+1 = in+1 . . . Xn+K−1 = in+K−1)

= P ((Xn+1, Xn+2, . . . Xn+K) = (jn+1, jn+2, . . . , jn+K)|Xn = in, Xn+1 = in+1 . . . Xn+K−1 = in+K−1)

= P (Yn+1 = yn+1|Yn = yn).

Hence, {Yn}n≥0 is an ordinary Markov chain.
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9. Given any state j, let Sm(j) := {k ∈ S|Pm0(k, j) > 0 for some m0 ∈ {1, 2, . . .m}}. We
claim that SN (j) = S. One can easily verify the following properties (i) Sm(j) ⊆ Sm+1(j), (ii)
if Sm(j) = Sm+1(j), then Sm(j) = Sm+l(j) for all l ≥ 0 (Exercise!).

By the fact that Xn is irreducible, for any k1 ∈ S, there is some Nk1 ∈ N such that
PNk1 (k1, j) > 0. Let N0 = max{N1, N2, . . . , Nn}, we have SN0(j) = S.

Next, we claim that there is some k0 ∈ S such that P (k0, j) > 0. Otherwise P (k0, j) = 0 for
all k0 ∈ S and thus Pm(k0, j) = 0 for all k0 ∈ S and m ∈ N, contradicting to the irreducibility
of Xn. Hence, |S1(j)| ≥ 1. By our property (i), we have |Sm(j)| ≥ 1 for all m ∈ N.

We claim that |SN (j)| = N . If not, then there is some m0 ∈ {1, 2, . . . N} such that 1 ≤
|SN (j)| ≤ m0 − 1. By pigeonhole principle (i.e. counting), there must be some m1,m2 such
that |Sm1(j)| = |Sm2(j)|, say m1 < m2. Then, by property (i), we have Sm1(j) ⊆ Sm1+1(j) ⊆
· · · ⊆ Sm2(j) and hence Sm1(j) = Sm1+1(j) = · · · = Sm2(j). By property (ii), we have |SN (j)| ≤
m0 − 1 < N for all m ∈ N, contradicting the fact that |SN (j)| = |S| = N. Hence, we conclude
that SN (j) = S.

Hence, for any i ∈ S, there exists some mij ∈ {1, 2, . . . , N} such that Pmij (i, j) > 0. Let
δ = mini,j=1,2,...n{Pmij (i, j)}/2 > 0. Then, Pi(Tj ≤ N) ≥ δ and δ ∈ (0, 1).

Let ρ = (1− δ)1/N ∈ (0, 1), C = ρ−N . Then,

P (Xm 6= j,m = 0, . . . , n|X0 = i) ≤ 1 ≤ Cρn

for n = 0, 1, . . . , N.
Next, suppose that

P (Xm 6= j,m = 0, . . . , n|X0 = i) ≤ Cρn

for n = 1, 2, . . . ,K. for some positive integer K. Then, if P (XK = j|X0 = i) = 1, then
P (Xm 6= j,m = 0, . . . ,K +N |X0 = i) = 0 ≤ Cρn. Otherwise,

P (Xm 6= j,m = 0, . . . ,K +N |X0 = i)

= P (Xm 6= j,m = K + 1, . . . ,K +N |XK 6= j)P (Xm 6= j,m = 0, . . . ,K|X0 = i)

≤ P (Xm 6= j,m = K + 1, . . . ,K +N |XK 6= j)× CρK

≤ (1− δ)× CρK

= CρN+K ,

where the last inequality comes from the fact that wherever XK is, it reaches state j within N
steps with probability at least δ.

The conclusion now follows from induction.
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(b).

Ei(Tj) =

∞∑
k=1

kPi(Tj = k)

≤
∞∑
k=0

(k + 1)Pi(Tj ≥ (k + 1))

=
∞∑
k=0

(k + 1)P (Xm 6= j,m = 0, . . . , k|X0 = i)

≤ C
∞∑
k=0

(k + 1)ρk

=
C

(1− ρ)2
<∞

Thus,

E(Tj) =
∑
i∈S

P (X0 = i)Ei(Tj) ≤
∑
i∈S

P (X0 = i)
C

(1− ρ)2
=

C

(1− ρ)2
<∞.
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